Abstract
In this article the method of the integral assessment of the level of students` foreign language communicative competence by the group of experts through the complex test in a foreign language is considered. The use of mathematical methods and modern specialized software during complex testing of students significantly improves the expert methods, particularly in the direction of increasing the reliability of the assessment. Capitalizing analytical software environment realizes the simulation of non-linear generalizations based on artificial neural networks, which increases the accuracy of the estimate and allows further efficient use of the competent experts` experience gained in the model.References
Бешелев С. Д. Математико-статистические методы экспертных оценок. / С. Д. Бешелев, Ф. Г. Гурвич. – М. : Статистика, 1980. – 263 с.
Гайдышев И. П. Программное обеспечение анализа данных AtteStat. Руководство пользователя. Версия 13. / И. П. Гайдышев. – 2012. – 506 с.
Компания BaseGroup™ Labs. Deductor. Руководство по алгоритмам. Версия 5.2.0 [Електронний ресурс] – 1995–2010. – Режим доступу : www.basegroup.ru
Лазарев В. М. Нейросети и нейрокомпьютеры. Монография. / В. М. Лазарев, А. П. Свиридов. – М., 2011. – 131 с.
Монтгомери Д. К. Планирование эксперимента и анализ данных. / Д. К. Монтгомери. – Л. : Судостроение, 1980. – 384 с.
Орлов А. И. Экспертные оценки : учеб. пос. / А. И. Орлов. – М. : Экзамен, 2002. – 31 с.
Паклин Н. Б. Биэнес аналитика: от данных к знаниям (+СО) : учебное пособие. 2e изд., испр. / Н. Б. Паклин, В. И. Орешков. – СПб. : Питер, 2013. – 704 с.
Хабаров С. П. Экспертные системы [Електронний ресурс] / С. П. Хабаров. – Режим доступу : http://www.habarov.spb.ru/new_es/index.htm.
Ясницкий Л. Н. Введение в искусственный интеллект. Учеб. пособие для ВУЗов. / Л. Н. Ясницкий. – М. : Изд. центр «Академия», 2005. –176 с.
Hinton G. E. How neural networks learn from experience. [Електронний ресурс] / G. E. Hinton. Scientific American, September 1992. – Рр. 145–151. – Режим доступу : http://www.cs.toronto.edu/~hinton/absps/sciam92.pdf.
Rojas R. Neural Network. / R. Rojas. – Berlin, Heidelberg Springer Verlag, 1996. – 502 p.
Wasserman P. D. Neural Computing. Theory and Practice. / P. D. Wasserman. – М. : Мир, 1992. – 240 с.
REFERENCES (TRANSLATED AND TRANSLITERATED)
Beshelev S. D. Mathematical and statistical methods of expert estimates. / S. D. Beshelev, F. G. Gurvich. – M. : Statistika, 1980. – 263 s. (in Russian).
Gaydyshev I. P. AtteStat: the software data analysis. User guide. Release 13. / I. P. Gaydyshev. – 2012. – 506 s. (in Russian).
BaseGroup™ Labs. Deductor. Guide to algorithms. Release 5.2.0 [online] ––1995-2010. – Available from: www.basegroup.ru (in Russian).
Lazarev V. M. Neural networks and neurocomputers. Monograph. / V. M. Lazarev, A. P. Sviridov. – M. : 2011. – 131 s. (in Russian).
Montgomeri D. K. Experimental Design and Analysis. / D. K. Montgomeri. – L. : Sudostroenie, 1980. – 384 s. (in Russian).
Orlov A. I. Expert assessment: Tutorial / A. I. Orlov. – M. : Ekzamen, 2002. – 31 s. (in Russian).
Paklin N. B., Oreshkov V. I. Business Analysis: from data to knowledge: Textbook. 2nd edition, Revised. / N. B. Paklin, V. I. Oreshkov.–– SPb. : Piter, 2013. – 704 s. (in Russian).
Khabarov S. P. Expert systems [online] / S. P. Khabarov. – Available from: http://www.habarov.spb.ru/new_es/index.htm (in Russian).
Yasnitskiy L. N. Introduction to Artificial Intelligence. Textbook for Higher Schools./ L. N. Yasnitskiy. – M. : Izd. tsentr «Akademiya», 2005. –176 s. (in Russian).
Hinton G. E. How neural networks learn from experience. [online] / G. E. Hinton. Scientific American, September 1992. – рр. 145–151. Available from: http://www.cs.toronto.edu/~hinton/absps/sciam92.pdf (in English).
Rojas R. Neural Network. / R. Rojas. – Berlin Heidelberg Springer Verlag, 1996. – 502 p. (in English).
Wasserman P. D. Neural Computing. Theory and Practice. / P. D. Wasserman. – M. : Mir, 1992. – 240 s. (in English).
Authors who publish in this journal agree to the following terms:
- Authors hold copyright immediately after publication of their works and retain publishing rights without any restrictions.
- The copyright commencement date complies the publication date of the issue, where the article is included in.
Content Licensing
- Authors grant the journal a right of the first publication of the work under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others freely to read, download, copy and print submissions, search content and link to published articles, disseminate their full text and use them for any legitimate non-commercial purposes (i.e. educational or scientific) with the mandatory reference to the article’s authors and initial publication in this journal.
- Original published articles cannot be used by users (exept authors) for commercial purposes or distributed by third-party intermediary organizations for a fee.
Deposit Policy
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) during the editorial process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see this journal’s registered deposit policy at Sherpa/Romeo directory).
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Post-print (post-refereeing manuscript version) and publisher's PDF-version self-archiving is allowed.
- Archiving the pre-print (pre-refereeing manuscript version) not allowed.