TRAINING SOCIOLOGY STUDENTS IN COMPUTER ANALYSIS OF DEMOGRAPHIC PROCESSES AND STRUCTURE

Cover Image
Liubov F. Panchenko

Abstract

In the modern era of digital globalization, it is becoming more and more important to train sociology students in the field of demographics and demographic statistics based not only on demographic theories but also on the practical application of the new computer tools and technologies, databases and Internet services. The article analyzes the capabilities of modern computer tools for the analysis of demographic processes and structures in training sociology students; substantiates the use of the R environment as a tool for analysis and graphical representation of demographic data. It presents the idea of teaching students to perform computer analysis of demographic data using a combination of Excel spreadsheets, SPSS statistical package, R environment illustrated by two examples. The first example concerns building and comparing the gender-age pyramid of the population of Ukraine at different years and includes searching for the relevant data, building the pyramid using standard diagram building Excel tools, using SPSS tools (Chart Builder, Histogram, Population Pyramid), and using pyramid package of R environment. The second example relates to calculation of childcare and grandparent care load coefficients, visualizing their dynamics, and includes an introduction to the demographic passport of Ukraine. The article presents the developed methodological support for teaching sociology students to perform demographic data analysis, including presentation-lectures on the fundamental principles of work in R and R Studio environment, laboratory works (theory summary, detailed operative instructions, control questions, tasks for students ‘ independent work); data packages attached to every assignment. The author has analyzed the didactic capabilities of the free Gapminder service that includes the list of the tools titled `Play with Data`, bubble chart, maps, ranking, trends, age pyramids. This provides colorful and dynamic data visualization for chosen demographic criteria (depending on the research objectives) by countries and continents over time that stimulates the students to conduct additional scientific research.

Keywords

computer data analysis; demographic data; Excel; SPSS; environment R; information and communication technologies; Gapminder; students-sociologists



References

P. V. Voss. «Demography as a Spatial Social Science». Population Research and Policy Review,№26,р.457-476, 2007.

С. Г. Стеценко, Демографічна статистика, К., Вища школа, 2005.

І. М. Прибиткова, Основи демографії, К., «АртЕк», 1995.

З.О. Пальян, Демографічна статистика,К., КНЕУ, 2003.

J. Fox, R.Andersen. «Using the r statistical computing environment to teach social statistics courses».[Електронний ресурс]. Режим доступу: https://r-forge.r-project.org/R/?group_id=328.

R. S. Bivand, E. Pebesma, V. Gómez-Rubio, Applied Spatial Data Analysis with R, New York, 2013.

A. Lamstein. Exploring the World with Choroplethr [Електронний ресурс]. Режим доступу: https://www.slideshare.net/main/private_slideshow?path_to_redirect_at=https%3A%2F%2Fwww.slideshare.net%2Farilamstein%2Fexploring-the-world-with-choroplethr-febru.

R. Hyndman «Forecasting time series using R». [Електронний ресурс]. Режим доступу: https://robjhyndman.com/seminars/melbournerug/.

Zack W. Almquist. «US Census Spatial and Demographic Datain R:The UScensus2000 Suite of Packages», Journal of Statistical Software, November 2010, Vol. 37, Issue 6. [Електронний ресурс]. Режим доступу: http://www.jstatsoft.org256.

US census 2010. [Електронний ресурс]. Режим доступу: http://r.adu.org.za/web/packages/UScensus2010/UScensus2010.pdf.

C. G. Camarda [Електронний ресурс]. Режим доступу: https://sites.google.com/site/carlogiovannicamarda.

R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 900051-07-0 [Електронний ресурс]. Режим доступу:http//www.R-project.org.

R-project.org. (2017). R: The R Project for Statistical Computing [Електронний ресурс]. Режим доступу: http://www.R-project.org .

Cran.r-project.org, 2017 [Електронний ресурс]. Режим доступу: https://cran.r-project.org/web/packages/demography/demography.pdf. .

Cran.r-project.org,2017 [Електронний ресурс]. Режим доступу:https://cran.r-project.org/web/packages/LexisPlotR/LexisPlotR.pdf.

Cran.r-project.org,2017. [Електронний ресурс]. Режим доступу:https://cran.r-project.org/web/packages/pyramid/pyramid.pdf.

Перепис населення України [Електронний ресурс]. Режим доступу : http://database.ukrcensus.gov.ua/MULT/Database/Census/databasetree_uk.asp.

Gapminder [Електронний ресурс]. Режим доступу: http://www.gapminder.org/.

Л. Ф. Панченко, Практикум по аналізу данных, Луганск, Изд-во ГУ «ЛНУ имени Тараса Шевченко»,2013.


REFERENCES (TRANSLATED AND TRANSLITERATED)

P.V. Voss. «Demography as a Spatial Social Science». Population Research and Policy Review,№26, р.457-476, 2007. (in English)

S.G. Stecenko, Demographic statistics,K., Higher School Press, 2005. (in Ukrainian)

I.M. Prybytkova, Fundamentals of Demography, K., «ArtEk», 1995. (in Ukrainian)

Z.O. Paljjan, Demographic statistics, K., KNEU, 2003. (in Ukrainian)

J. Fox, R.Andersen. «Using the r statistical computing environment to teach social statistics courses». [Online]. Available:https://r-forge.r-project.org/R/?group_id=328(in English)

R.S.Bivand, E. Pebesma, V. Gómez-Rubio, Applied Spatial Data Analysis with R, NewYork, 2013. (in English)

A.Lamstein. Exploring the World with Choroplethr [Online]. Available: https://www.slideshare.net/main/private_slideshow?path_to_redirect_at=https%3A%2F%2Fwww.slideshare.net%2Farilamstein%2Fexploring-the-world-with-choroplethr-febru (in English)

R. Hyndman «Forecasting time series using R». [Online]. Available: https://robjhyndman.com/seminars/melbournerug/(in English)

Zack W. Almquist. «US Census Spatial and Demographic Data in R:The UScensus2000 Suite of Packages», Journal of Statistical Software, November 2010, Vol. 37, Issue 6. [Online]. Available: http://www.jstatsoft.org256 (inEnglish)

US census 2010. [Online]. Available: http://r.adu.org.za/web/packages/UScensus2010/UScensus2010.pdf(in English)

C. G.Camarda. [Online]. Available: https://sites.google.com/site/carlogiovannicamarda (in English)

R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 900051-07-0, URL http://www.R-project.org (in English)

R-project.org. (2017). R: The R Project for Statistical Computing. [online] Availableat: http://www.R-project.org (in English)

Cran.r-project.org, 2017. [Online]. Available: https://cran.r-project.org/web/packages/demography/demography.pdf (in English)

Cran.r-project.org,2017. [Online]. Available:https://cran.r-project.org/web/packages/LexisPlotR/LexisPlotR.pdf (in English)

Cran.r-project.org,2017. [Online]. Available:https://cran.r-project.org/web/packages/pyramid/pyramid.pdf (in English)

Ukraine census. [Online]. Available: http://database.ukrcensus.gov.ua/MULT/Database/Census/databasetree_uk.asp (in Ukrainian)

Gapminder. [Online]. Available: http://www.gapminder.org/ (in English)

L.F.Panchenko,Data analysis practicum,Luhansk, Luhansk Taras Shevchenko National University Press,2013.(in Russian)





Copyright (c) 2018 Liubov F. Panchenko


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.