PDF (Ukrainian)


cross-cutting skills
learning tool
learning outcomes
gender differences

How to Cite



The article discusses the potential of the smartphone as a modern educational and learning tool. The purpose of the presented subject-oriented research was to study the personal and gender peculiarities of students' perceptions about the possibilities of forming and developing cross-cutting skills using smartphones as the most common means of independent/distance learning.

For the purpose of the study, the survey was conducted using the authors' questionnaire, which contained 23 items (descriptors of cross-cutting skills), which were assessed by the degree of agreement with the proposed statement on an ordinal Likert scale. The results of the survey (N=156) were analysed by gender using descriptive and factor analysis. The novelty of the study is based on the application of an instrumental and differential approaches to the study of the formation of cross-cutting skills as learning outcomes common to all subjects and consists in the identification of cross-cutting skills clusters components that are important for male and female students in terms of opportunities that arise from the using of smartphones. Based on the analysis of individual and generalized rank matrices by the relevant features, we identified the skills which development, according to the respondents, is facilitated by smartphone use and the skills which development is questioned by students. Based on the factor analysis, four-factor models of cross-cutting skills that are important for respondents, which, in the opinion of students, are formed as a result of using smartphones, were created. Comparison of the characteristics of the assessment objects in the respective factor spaces made it possible to identify gender differences in students' perceptions of the impact of smartphones on learning outcomes. Based on analysis of the identified advantages and disadvantages of using smartphones for students' mastery of cross-cutting skills, practice-oriented conclusions are proposed that can be used in developing methodological recommendations for effective methods, tools and means of forming and assessing cross-cutting skills.

PDF (Ukrainian)


“Майже 23 млн українців регулярно користуються Інтернетом – дослідження”, 2019. [Електронний ресурс]. Доступно:

“Сексуальне насильство над дітьми та сексуальна експлуатація дітей в Інтернеті в Україні”: АНАЛІТИЧНИЙ ЗВІТ за результатами кількісного дослідження, МБО «Служба порятунку дітей» у партнерстві із Уповноваженим Президента України з прав дитини, Агенція Proinsight Lab (виконавець), 2021. [Електронний ресурс]. Доступно:

M.A. Al-Mashhadani, & M.F. Al-Rawe, “The future role of mobile learning and smartphones applications in the Iraqi private universities”. Smart Learn. Environ.,vol. 5, no. 28, 2018.

A. Sliwka, & B. Klopsch, “Disruptive Innovation! Wie die Pandemie die „Grammatik der Schule“ herausfordert und welche Chancen sich jetzt für eine „Schule ohne Wände“ in der digitalen Wissensgesellschaft bieten”, in Langsam vermisse ich die Schule ... Schule während und nach der Corona-Pandemie, D. Fickermann and B. Edelstein (Hrsg.), Münster, New York: Waxmann, 2020, pp. 216-229.

M. A. Alwraikat, “Smartphones as a New Paradigm in Higher Education Overcoming Obstacles”, International Journal of Interactive Mobile Technologies (IJIM), vol. 11, no. 4, 114, 2017.

H. Oz, “Prospective English teachers’ ownership and usage of mobile device as m-learning tools”, Procedia Soc. Behav. Sci., vol. 141, pp. 1031–1041, 2013.

C. Steel, “Fitting learning into life: Language students' perspectives on benefits of using mobile apps”, Ascilite, pp. 875–880, 2012.

L. Sha, C. K. Looi, W. Chen, & B. H. Zhang, “Understanding mobile learning from the perspective of self-regulated learning”, Journal of Computer Assisted Learning, vol. 28, no. 4, pp. 366–378, 2012.

B. Klimova, “Mobile phones and/or smartphones and their apps for teaching English as a foreign language”, Educ. Inf. Technol., vol. 23, pp. 1091–1099, 2017.

O. G. Deniza et al. “Effects of short and long-term electromagnetic fields exposure on the human hippocampus”, J. Microscopy Ultrastruct, vol. 5, pp. 191–197, 2017.

Q. Chen, & Y. Zan, “Does multitasking with mobile phones affect learning? A review”, Comput. Hum. Behav., vol. 54, pp. 34–42, 2016.

K. Hochberg, J. Kuhn, & A. Müller, “Using Smartphones as Experimental Tools – Effects on Interest, Curiosity, and Learning in Physics Education”, J Sci Educ Technol, vol. 27, pp. 385–403, 2018/

B. Klimova, “Impact of Mobile Learning on Students’ Achievement Results”, Education Sciences, vol. 9, no. 2, 90, 2018.

O. J. Sunday, O. O. Adesope, & P. L. Maarhuis, “The effects of smartphone addiction on learning: A meta-analysis”, Computers in Human Behavior Reports, vol. 4, 100114, 2021.

A. Lepp, J. E. Barkley, & A. C. Karpinski, “The relationship cell phone use and academic performance in a sample of U.S. college students”, SAGE open, vol. 5, no. 1, pp. 1–9, 2015.

J. A. P. Roberts, I. H. Yaya, & C. Manolis, “The invisible addiction: Cell-phone activities and addiction among male and female college students”, Journal of Behavioral Addictions, vol. 3, no. 4, pp. 254–265, 2014.

E. Sumuer, & D. N. Kaşıkcı, “The role of smartphones in college students’ mind-wandering during learning”, Computers & Education, vol. 190, 104616, 2022. ISSN 0360-1315.

J. Smallwood, J. W. Schooler, “The Science of Mind Wandering: Empirically Navigating the Stream of Consciousness”, Annual Review of Psychology, vol. 66, no. 1, pp. 487–518, 2015. doi:10.1146/annurev-psych-010814-015331.

R. Lavoie, & Y. Zheng, “Smartphone use, flow and wellbeing: A case of Jekyll and Hyde”, Computers in Human Behavior, vol. 138, 107442, 2023.

J. K. Nayak, “Relationship among smartphone usage, addict ion, academic performance and the moderating role of gender: A study of higher education students in India”, Computers & Education, vol. 123, pp. 164-173, 2018.

Y. Park, & S. Lee, “Gender differences in smartphone addiction and depression among Korean adolescents: Focusing on the internal mechanisms of attention deficit and self-control”, Computers in Human Behavior, vol. 136, 107400, 2022.

D. O. S. Bulent, “The relationship between mobile phone use, metacognitive awareness and academic achievement”, European Journal of Educational Research, vol. 3, no. 4, pp. 192-200, 2015.

Y. Lin, Y. Liu, W. Fan, V. K. Tuunainen, Sh. Deng, “Revisiting the relationship between smartphone use and academic performance: A large-scale study”, Computers in Human Behavior, vol. 122, 106835, 2021.

S. Han, “Impact of smartphones on students: How age at first use and duration of usage affect learning and academic progress”, Technology in Society, vol. 70, 102002, 2022.

Ю. О. Жук, Теоретико-методичні засади організації навчальної діяльності старшокласників в умовах комп’ютерно орієнтованого середовища навчання: Монографія. Київ.: Педагогічна думка, 2017.

Ю. О. Жук, “Діалектика педагогічного знання в умовах комп’ютерно орієнтованого процесу навчання”, Комп’ютер в школі та сім’ї, вип. 4, с. 3–7, 2011.

КМУ. Постанова №898 від 30.09.2020. Державний стандарт базової середньої освіти. [Електронний ресурс]. Доступно:

J. Grzegorek, & A. P. Wierzbicki, “Multiple Criteria Evaluation and Ranking of Social Penetration of Information Society Technologies”, Journal of Telecommunications and Information Technology, vol. 4, pp. 3-13, 2012.

J. S. Hyde, “Gender and sex: So what has metaanalysis done for me?”, The Psychology Teacher Network Newsletter, vol. 2, pp. 2-6, 1992.

J. Cohen, Statistical power analysis for the behavioral sciences. New York: Academic Press, 1969.

M. A. Bujang, P. A. Ghani, S. A. Soelar, & N. A. Zulkifli, "Sample size guideline for exploratory factor analysis when using small sample: Taking into considerations of different measurement scales”, 2012 International Conference on Statistics in Science, Business and Engineering (ICSSBE), 2012, pp. 1-5, doi: 10.1109/ICSSBE.2012.6396605.

S. S. Shaukat, T. A. Rao, & M. A. Khan, “Impact of sample size on principal component analysis ordination of an environmental data set: effects on eigenstructure”, Ekológia (Bratislava), vol. 35, no. 2, pp. 173–190, 2016. DOI:10.1515/eko-2016-0014.

J. C. F. de Winter, D. Dodou, & P. A. Wieringa, “Exploratory Factor Analysis with Small Sample Sizes”, Multivariate Behavioral Research, vol. 44, no. 2, pp. 147-181, 2009.

S. Jung, & S. Lee, “Exploratory factor analysis for small samples”, Behav. Res., vol. 43, pp. 701–709, 2011. DOI 10.3758/s13428-011-0077-9

U. Lorenzo-Seva, How to report the percentage of explained common variance in exploratory factor analysis. Technical Report. Department of Psychology, Universitat Rovira i Virgili, Tarragona, 2013.

M. Holovko , S. Holovko , & Yu. Zhuk , “The Influence of Gender Factor on Development of Stereotypical Image of a Specialist (Lawyer) of Future Profession in Students”, Universal Journal of Educational Research, vol. 8, no. 5, pp. 1810-1820, 2020. DOI: 10.13189/ujer.2020.080517.

Case study by the UNESCO-Fazheng project on best practices in mobile learning (2018-2020). [Online]. Available:

UNESCO, Beyond disruption: technology-enabled learning futures, 2020 edition of Mobile Learning Week, 12-14 October 2020: report/ Fengchun, M., Wayne, H., 2021 [Online]. Available:

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Юрій Олексійович Жук, Антоніна Вікторівна Гривко


Download data is not yet available.