Abstract
The potential opportunities and advantages of artificial intelligence methods contribute to the development and implementation of innovative technologies in various fields of science, including photography and video recording, which creates wide opportunities for manipulating the content of digital images and actualizes the problem of establishing their authentication. The widespread use of artificial intelligence methods for image editing sometimes makes it impossible or difficult to find changed areas.
In this regard, the purpose of this work is to substantiate the areas of training specialists to use of artificial intelligence methods during establishing the authenticity of images, and the main task is to study modern methods of its assessment.The article analyzes the use of artificial neural network models to assess the authenticity of images by the method of complex use of several methods for assessing noise with generalization of its distortions in an artificial neural network.
Special attention is paid to the analysis of modern technologies for editing digital images using artificial intelligence methods. The results of the study of known pre-processing methods for detecting inauthenticity of images edited by modern editing technologies and suitable for generalization by artificial intelligence methods are presented. The features of the use of neural network classifiers for assessing image editing zones with pre-processing using filtering methods also in the methodological plane are considered, namely when training experts in the field of phototechnical research and video recording research. The scientific novelty of the work lies in assessing the effectiveness of combinations of various artificial neural network models and methods for extracting digital noise in images to solve the problem of their authentication.
Probabilities for assessing the authenticity of images are provided based on the generalization of the results of the simultaneous application of ELA, PCA, and NOISE methods using artificial neural network models in the semantic classification and segmentation mode.
Based on the research conducted, the main areas of training specialists to solve the problem of image authentication in modern conditions have been determined.
References
[1] M. Langford, Langford's Basic Photography, 10th ed. Abingdon, U.K.: Taylor and Francis, 2015. [Електронний ресурс]. Доступно: https://www.perlego.com/book/2192735/langfords-basic-photography-the-guide-for-serious-photographers-pdf
[2] M. Kriss, Handbook of Digital Imaging. Hoboken, NJ, USA: John Wiley & Sons, Feb. 2015.
[3] H. T. Sencar, L. Verdoliva, and N. Memon, Multimedia Forensics, 1st ed. Singapore: Springer, Apr. 2022. doi: 10.1007/978-981-16-7621-5.
[4] S. Seth, S. Rao, T. Verma, K. Viyanwar and P. Dandekar, "Fake Image Detector using Machine Learning," 2024 IEEE Pune Section International Conference (PuneCon), Pune, India, 2024, pp. 1-7, doi: 10.1109/PuneCon63413.2024.10895023.
[5] S. Agrawal, P. Kumar, S. Seth, T. Parag, M. Singh and V. Babu, "SISL:Self-Supervised Image Signature Learning for Splicing Detection & Localization," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 22-32, doi: 10.1109/CVPRW56347.2022.00012.
[6] A. E. Daryani, M. Mirmahdi, A. Hassanpour, H. O. Shahreza, B. Yang and J. Fierrez, "IRL-Net: Inpainted Region Localization Network via Spatial Attention," in IEEE Access, vol. 11, pp. 115677-115687, 2023, doi: 10.1109/ACCESS.2023.3324541.
[7] P. Deb, S. Deb, A. Das and N. Kar, "Image Forgery Detection Techniques: Latest Trends and Key Challenges," in IEEE Access, vol. 12, pp. 169452-169466, 2024, doi: 10.1109/ACCESS.2024.3498340.
[8] С. М. Бобрицкий, "Методические аспекты комплексного исследования с целью выявления признаков монтажа в цифровой фотографии", Теорія та практика судової експертизи і криміналістики. Харків, Україна: Право, 2010. Вип. 10, с. 633-639.
[9] С. В. Чорний, О. І. Брендель, А. І. Роман, "Виявлення ознак редагування цифрових зображень за допомогою методу стеганографічного аналізу шумів", Теорія та практика судової експертизи і криміналістики. Харків, Україна: Право, 2019. Вип. 20, с.251-261.
[10] S. Bourouis, R. Alroobaea, A. M. Alharbi, M. Andejany, and S. Rubaiee, "Recent Advances in Digital Multimedia Tampering Detection for Forensics Analysis," Symmetry, vol. 12, no. 11, Art. no. 1811, Nov. 2020.
[11] S. Gupta, N. Mohan, and P. Kaushal, "Passive Image Forensics Using Universal Techniques: A Review," Artif. Intell. Rev., vol. 55, pp. 1629–1679, 2022.
[12] О. І. Брендель, "Экспертиза відео-, звукозапису: теоретичні та організаційні засади", дис. докт. філос. в галузі права. Харків, ННЦ ІСЕ, 2024.
[13] Scientific Working Group on Digital Evidence, «SWGDE Best Practices for Forensic Audio», [Електронний ресурс]. Доступно: https://www.swgde.org/documents/Current%20. Дата звернення: Лютий. 25, 2024.
[14] Z. Liu, F. Zhang, J. He, J. Wang, Z. Wang, and L. Cheng, "Text-Guided Mask-Free Local Image Retouching," in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Brisbane, Australia, 2023, pp. 2783–2788. doi: 10.1109/ICME55011.2023.00473.
[15] J. Yang and N. I. R. Ruhaiyem, "Review of Deep Learning-Based Image Inpainting Techniques," IEEE Access, vol. 12, pp. 138441–138482, 2024. doi: 10.1109/ACCESS.2024.3461782.
[16] S. Wang et al., "Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Vancouver, BC, Canada, 2023, pp. 18359–18369. doi: 10.1109/CVPR52729.2023.01761.
[17] Y.-C. Cheng, C. H. Lin, H.-Y. Lee, J. Ren, S. Tulyakov, and M.-H. Yang, "InOut: Diverse Image Outpainting via GAN Inversion," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, 2022, pp. 11421–11430. doi: 10.1109/CVPR52688.2022.01114.
[18] J. Wagner, Forensically. [Електронний ресурс]. Доступно: https://29a.ch/photo-forensics/#clone-detection. Дата звернення: Лютий. 24, 2025.
[19] FotoForensics. [Електронний ресурс]. Доступно: http://fotoforensics.com. Дата звернення: Лютий. 24, 2025.
[20] Izitru. [Електронний ресурс]. Доступно: https://www.izitru.com. Дата звернення: Лютий. 24, 2025.
[21] Imageforensic. [Електронний ресурс]. Доступно:http://www.imageforensic.org. Дата звернення: Лютий. 24, 2025.
[22] Веб-сервер Github. [Електронний ресурс]. Доступно: https://github.com/ImpulseAdventure/JPEGsnoop. Дата звернення: Лютий. 24, 2025.
[23] Photo Analysis and Tampering Detection. Amped Software. [Електронний ресурс]. Доступно: https://ampedsoftware.com/authenticate. Дата звернення: Лютий. 24. 2025.
[24] Веб-сервер Google Play. [Електронний ресурс]. Доступно: https://play.google.com/store/search?q=fake%20image%20detector&c=apps. Дата звернення: Лютий. 24, 2025.
[25] S. Kaur, A. Singh, and A. Jindal, "Analyzing Different Digital Image Authentication Methods," in Proc. 2nd Int. Conf. Electron. Renewable Syst. (ICEARS), Tuticorin, India, 2023, pp. 804–811. doi: 10.1109/ICEARS56392.2023.10085193.
[26] K. A. P. da Costa, J. P. Papa, L. A. Passos, D. Colombo, J. Del Ser, K. Muhammad, and V. H. C. de Albuquerque, "A Critical Literature Survey and Prospects on Tampering and Anomaly Detection in Image Data," Appl. Soft Comput., vol. 97, pt. B, Dec. 2020, Art. no. 106727. doi: 10.1016/j.asoc.2020.106727.
[27] M. Kaur and P. Garg, "A Review of Authentication Techniques Used for Security in Cloud Computing," in Proc. 7th Int. Conf. Parallel, Distrib. Grid Comput. (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 187–191. doi: 10.1109/PDGC56933.2022.10053251.
[28] I. Ali, A. Khan, and M. Waleed, "A Google Colab Based Online Platform for Rapid Estimation of Real Blur in Single-Image Blind Deblurring," in Proc. 12th Int. Conf. Electron., Comput. Artif. Intell. (ECAI), Bucharest, Romania, 2020, pp. 1–6. doi: 10.1109/ECAI50035.2020.9223244.
[29] Z. K. Kalazhokov and Y. T. Makoveichuk, "Methodology for Training Data Science Skills Based on Competitions on the Kaggle Platform," in Proc. Seminar Inf. Comput. Process. (ICP), Saint Petersburg, Russia, 2023, pp. 94–96. doi: 10.1109/ICP60417.2023.10397418.
[30] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi, "A Full-Image Full-Resolution End-to-End-Trainable CNN Framework for Image Forgery Detection," IEEE Access, vol. 8, pp. 133488–133502, 2020. doi: 10.1109/ACCESS.2020.3009877.
[31] Веб-сервер Github. [Електронний ресурс]. Доступно:https://github.com/FrancescoMarra/E2E-ForgeryDetection Дата звернення: Лютий. 24, 2025.
[32] O. Le Meur and C. Guillemot, "Super-Resolution-Based Inpainting," in Comput. Vis. – ECCV 2012, vol. 7577, A. Fitzgibbon et al., Eds. Berlin, Germany: Springer, 2012, pp. 554–567. doi: 10.1007/978-3-642-33783-3_40.
[33] G. Liu, F. A. Reda, K. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, "Image Inpainting for Irregular Holes Using Partial Convolutions," in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 2018. [Електронний ресурс]. Доступно: https://doi.org/10.48550/arXiv.1804.07723
[34] Веб-сервер Theinpaint. [Електронний ресурс]. Доступно: https://theinpaint.com Дата звернення: Лютий. 24, 2025.
[35] «Методика дослідження ознак монтажу цифрових зображень на основі аналізу ентропії шумів», зареєстрована у Державному реєстрі методик проведення судових експертиз МЮ України 18.01.2019 (реєстраційний код 7.1.15). [Електронний ресурс]. Доступно: https://rmpse.minjust.gov.ua/ Дата звернення: Лютий. 24. 2025.
[36] Веб-сервер Segmentation Models. [Електронний ресурс]. Доступно: https://smp.readthedocs.io/en/latest/ Дата звернення: Лютий. 24, 2025.
[37] J. He, S. Erfani, S. Wijewickrema, S. O’Leary, and K. Ramamohanarao, "Learning Non-Unique Segmentation with Reward-Penalty Dice Loss," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Glasgow, U.K., 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9206940.
REFERENCES (TRANSLATED AND TRANSLITERATED)
[1] M. Langford, Langford's Basic Photography, 10th ed. Abingdon, U.K.: Taylor and Francis, 2015. [Online]. Available: https://www.perlego.com/book/2192735/langfords-basic-photography-the-guide-for-serious-photographers-pdf (in English)
[2] M. Kriss, Handbook of Digital Imaging. Hoboken, NJ, USA: John Wiley & Sons, Feb. 2015. (in English)
[3] D H. T. Sencar, L. Verdoliva, and N. Memon, Multimedia Forensics, 1st ed. Singapore: Springer, Apr. 2022. doi: 10.1007/978-981-16-7621-5. (in English)
[4] S. Seth, S. Rao, T. Verma, K. Viyanwar and P. Dandekar, "Fake Image Detector using Machine Learning," 2024 IEEE Pune Section International Conference (PuneCon), Pune, India, 2024, pp. 1-7, doi: 10.1109/PuneCon63413.2024.10895023. (in English)
[5] S. Agrawal, P. Kumar, S. Seth, T. Parag, M. Singh and V. Babu, "SISL:Self-Supervised Image Signature Learning for Splicing Detection & Localization," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 22-32, doi: 10.1109/CVPRW56347.2022.00012. (in English)
[6] A. E. Daryani, M. Mirmahdi, A. Hassanpour, H. O. Shahreza, B. Yang and J. Fierrez, "IRL-Net: Inpainted Region Localization Network via Spatial Attention," in IEEE Access, vol. 11, pp. 115677-115687, 2023, doi: 10.1109/ACCESS.2023.3324541. (in English)
[7] P. Deb, S. Deb, A. Das and N. Kar, "Image Forgery Detection Techniques: Latest Trends and Key Challenges," in IEEE Access, vol. 12, pp. 169452-169466, 2024, doi: 10.1109/ACCESS.2024.3498340. (in English)
[8] S. M. Bobritsky, "Methodological aspects of a comprehensive study in order to identify signs of editing in digital photography", Theory and practice of ship examination and criminology, Kharkiv. VIP. 10. pp. 633-639, 2010. (in Russian).
[9] S. V. Chorny, O. I. Brendel, A. I. Roman, "A sign of digital image editing using the steganographic noise analysis method has been revealed", Theory and practice of ship examination and criminology, Kharkiv: Pravo. VIP. 20 P.251-261, 2019. (in Ukrainian).
[10] S. Bourouis, R. Alroobaea, A. M. Alharbi, M. Andejany, and S. Rubaiee, "Recent Advances in Digital Multimedia Tampering Detection for Forensics Analysis," Symmetry, vol. 12, no. 11, Art. no. 1811, Nov. 2020. (in English)
[11] S. Gupta, N. Mohan, and P. Kaushal, "Passive Image Forensics Using Universal Techniques: A Review," Artif. Intell. Rev., vol. 55, pp. 1629–1679, 2022. (in English)
[12] O. I. Brendel, "Examination of video and sound recording: theoretical and organizational ambushes": dis. ... doc. philosophy in Galuzi is right. Kharkiv. 310 p., 2024.[in Ukrainian].
[13] Scientific Working Group on Digital Evidence, "SWGDE Best Practices for Forensic Audio", [Online]. Available: https://www.swgde.org/documents/Current%20 Documents. Accessed on: Feb. 24, 2025. (in English)
[14] Z. Liu, F. Zhang, J. He, J. Wang, Z. Wang, and L. Cheng, "Text-Guided Mask-Free Local Image Retouching," in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Brisbane, Australia, 2023, pp. 2783–2788. doi: 10.1109/ICME55011.2023.00473. (in English)
[15] J. Yang and N. I. R. Ruhaiyem, "Review of Deep Learning-Based Image Inpainting Techniques," IEEE Access, vol. 12, pp. 138441–138482, 2024. doi: 10.1109/ACCESS.2024.3461782. (in English)
[16] S. Wang et al., "Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Vancouver, BC, Canada, 2023, pp. 18359–18369. doi: 10.1109/CVPR52729.2023.01761. (in English)
[17] Y.-C. Cheng, C. H. Lin, H.-Y. Lee, J. Ren, S. Tulyakov, and M.-H. Yang, "InOut: Diverse Image Outpainting via GAN Inversion," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, 2022, pp. 11421–11430. doi: 10.1109/CVPR52688.2022.01114. (in English)
[18] Wagner J. "Forensically", Accessed on: Feb. 24, 2025. [Online]. Available: https://29a.ch/photo-forensics/#clone-detection. (in English)
[19] FotoForensics, [Online]. Available: http://fotoforensics.com. Accessed on: Feb. 24, 2025. (in English)].
[20] Izitru, [Online]. Available: https://www.izitru.com. Accessed on: Feb. 24, 2025. (in English)
[21] Imageforensic, [Online]. Available:http://www.imageforensic.org Accessed on: Feb. 24, 2025. (in English)
[22] Web server Github, [Online]. Available:https://github.com/ImpulseAdventure/ Accessed on: Feb. 24, 2025. (in English)
[23] Photo Analysis and Tampering Detection, Amped Software.. [Online]. Available: https://ampedsoftware.com/authenticate. Accessed on: Feb. 24, 2025. (in English)
[24] Web server Google Play, [Online]. Available: https://play.google.com/store/search?q=fake%20image%20detector&c=apps Accessed on: Feb. 24, 2025. (in English)
[25] S. Kaur, A. Singh, and A. Jindal, "Analyzing Different Digital Image Authentication Methods," in Proc. 2nd Int. Conf. Electron. Renewable Syst. (ICEARS), Tuticorin, India, 2023, pp. 804–811. doi: 10.1109/ICEARS56392.2023.10085193. (in English)
[26] K. A. P. da Costa, J. P. Papa, L. A. Passos, D. Colombo, J. Del Ser, K. Muhammad, and V. H. C. de Albuquerque, "A Critical Literature Survey and Prospects on Tampering and Anomaly Detection in Image Data," Appl. Soft Comput., vol. 97, pt. B, Dec. 2020, Art. no. 106727. doi: 10.1016/j.asoc.2020.106727. (in English)
[27] M. Kaur and P. Garg, "A Review of Authentication Techniques Used for Security in Cloud Computing," in Proc. 7th Int. Conf. Parallel, Distrib. Grid Comput. (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 187–191. doi: 10.1109/PDGC56933.2022.10053251. (in English)
[28] I. Ali, A. Khan, and M. Waleed, "A Google Colab Based Online Platform for Rapid Estimation of Real Blur in Single-Image Blind Deblurring," in Proc. 12th Int. Conf. Electron., Comput. Artif. Intell. (ECAI), Bucharest, Romania, 2020, pp. 1–6. doi: 10.1109/ECAI50035.2020.9223244. (in English)
[29] Z. K. Kalazhokov and Y. T. Makoveichuk, "Methodology for Training Data Science Skills Based on Competitions on the Kaggle Platform," in Proc. Seminar Inf. Comput. Process. (ICP), Saint Petersburg, Russia, 2023, pp. 94–96. doi: 10.1109/ICP60417.2023.10397418. (in English)
[30] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi, "A Full-Image Full-Resolution End-to-End-Trainable CNN Framework for Image Forgery Detection," IEEE Access, vol. 8, pp. 133488–133502, 2020. doi: 10.1109/ACCESS.2020.3009877. (in English)
[31] Web server Github, [Online]. Available: https://github.com/FrancescoMarra/E2E- Accessed on: Feb. 24, 2025. (in English)
[32] O. Le Meur and C. Guillemot, "Super-Resolution-Based Inpainting," in Comput. Vis. – ECCV 2012, vol. 7577, A. Fitzgibbon et al., Eds. Berlin, Germany: Springer, 2012, pp. 554–567. doi: 10.1007/978-3-642-33783-3_40. (in English)
[33] G. Liu, F. A. Reda, K. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, "Image Inpainting for Irregular Holes Using Partial Convolutions," in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1804.07723 (in English)
[34] Web server Theinpaint, [Online]. Available: https://theinpaint.com Accessed on: Feb. 24, 2025. (in English)
[35] «Methodology for tracking the installation of digital images based on the analysis of noise entropy» from the State Register of Methods for Conducting Ship Expertise of the Ministry of Justice of Ukraine on January 18, 2019 (registration code 7.1.15), [Online]. Available: https://rmpse.minjust.gov.ua/ Accessed on: Feb. 24, 2025 (in Ukrainian).
[36] Web server Segmentation Models, [Online]. Available:https://smp.readthedocs.io/en/latest/ (in English).
[37] J. He, S. Erfani, S. Wijewickrema, S. O’Leary, and K. Ramamohanarao, "Learning Non-Unique Segmentation with Reward-Penalty Dice Loss," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Glasgow, U.K., 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9206940.(in English).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Sergiy Chornyy, Olha Brendel, Oleh Mieshkov

